一.经验
1.Spark Streaming包含三种计算模式:nonstate .stateful .window
2.kafka可通过配置文件使用自带的zookeeper集群
3.Spark一切操作归根结底是对RDD的操作
4.部署Spark任务,不用拷贝整个架包,只需拷贝被修改的文件,然后在目标服务器上编译打包。
5.kafka的log.dirs不要设置成/tmp下的目录,貌似tmp目录有文件数和磁盘容量限制
6.ES的分片类似kafka的partition
7spark Graph根据边集合构建图,顶点集合只是指定图中哪些顶点有效
8.presto集群没必要采用on yarn模式,因为hadoop依赖HDFS,如果部分机器磁盘很小,hadoop会很尴尬,而presto是纯内存计算,不依赖磁盘,独立安装可以跨越多个集群,可以说有内存的地方就可以有presto
9.presto进程一旦启动,JVM server会一直占用内存
10.如果maven下载很慢,很可能是被天朝的GFW墙了,可以在maven安装目录的setting.conf配置文件mirrors标签下加入国内镜像抵制**党的网络封锁,例如:
11.编译spark,hive on spark就不要加-Phive参数,若需sparkSQL支持hive语法则要加-Phive参数
12.通过hive源文件pom.xml查看适配的spark版本,只要打版本保持一致就行,例如spark1.6.0和1.6.2都能匹配
13.打开Hive命令行客户端,观察输出日志是否有打印
“SLF4J: Found binding in [jar:file:/work/poa/hive-2.1.0-bin/lib/spark-assembly-1.6.2-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]”
来判断hive有没有绑定spark
14.kafka的comsumer groupID对于spark direct streaming无效
15.shuffle write就是在一个stage结束计算之后,为了下一个stage可以执行shuffle类的算子,而将每个task处理的数据按key进行分类,将相同key都写入同一个磁盘文件中,而每一个磁盘文件都只属于下游stage的一个task,在将数据写入磁盘之前,会先将数据写入内存缓存中,下一个stage的task有多少个,当前stage的每个task就要创建多少份磁盘文件。
16.单个spark任务的excutor核数不宜设置过高,否则会导致其他JOB延迟
17.数据倾斜只发生在shuffle过程,可能触发shuffle操作的算子有:
distinct
,
groupByKey
,
reduceByKey
,
aggregateByKey
,
join
,
cogroup
,
repartition
等
18.运行时删除hadoop数据目录会导致依赖HDFS的JOB失效
19.sparkSQL UDAF中update函数的第二个参数 input: Row 对应的并非DataFrame的行,而是被inputSchema投影了的行
20.Spark的Driver只有在Action时才会收到结果
21.Spark需要全局聚合变量时应当使用累加器(Accumulator)
22.Kafka以topic与consumer group划分关系,一个topic的消息会被订阅它的消费者组全部消费,如果希望某个consumer使用topic的全部消息,可将该组只设一个消费者,每个组的消费者数目不能大于topic的partition总数,否则多出的consumer将无消可费
23.所有自定义类要实现serializable接口,否则在集群中无法生效
24.resources资源文件读取要在Spark Driver端进行,以局部变量方式传给闭包函数
25.DStream流转化只产生临时流对象,如果要继续使用,需要一个引用指向该临时流对象
26.提交到yarn cluster的作业不能直接print到控制台,要用log4j输出到日志文件中
27.HDFS文件路径写法为:hdfs://master:9000/文件路径,这里的master是namenode的hostname,9000是hdfs端口号。
28.不要随意格式化HDFS,这会带来数据版本不一致等诸多问题,格式化前要清空数据文件夹
29.搭建集群时要首先配置好主机名,并重启机器让配置的主机名生效
30.linux批量多机互信, 将pub秘钥配成一个
31小于128M的小文件都会占据一个128M的BLOCK,合并或者删除小文件节省磁盘空间
32.Non DFS Used指的是非HDFS的所有文件
33.spark两个分区方法coalesce和repartition,前者窄依赖,分区后数据不均匀,后者宽依赖,引发shuffle操作,分区后数据均匀
34.spark中数据写入ElasticSearch的操作必须在action中以RDD为单位执行
35.可以通过hive-site.xml修改
spark.executor.instances
,
spark.executor.cores
,
spark.executor.memory
等配置来优化hive on spark执行性能,不过最好配成动态资源分配。
二.基本功能
0.常见问题:
1如果运行程序出现错误:
Exception in thread "main" java.lang.NoClassDefFoundError: org/slf4j/LoggerFactory
,这是因为项目缺少
slf4j-api.jar
和
slf4j-log4j12.jar
这两个jar包导致的错误。
2如果运行程序出现错误:
java.lang.NoClassDefFoundError: org/apache/log4j/LogManager
,这是因为项目缺少log4j.jar这个jar包
3错误:
Exception in thread "main" java.lang.NoSuchMethodError: org.slf4j.MDC.getCopyOfContextMap()Ljava/util/Map
,这是因为jar包版本冲突造成的。
1.配置spark-submit (CDH版本)
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/fs/FSDataInputStream at org.apache.spark.deploy.SparkSubmitArguments.handleUnknown(SparkSubmitArguments.scala:451) at org.apache.spark.launcher.SparkSubmitOptionParser.parse(SparkSubmitOptionParser.java:178) at org.apache.spark.deploy.SparkSubmitArguments.
解决方案:
在
spark-env.sh
文件中添加:
export SPARK_DIST_CLASSPATH=$(hadoop classpath)
2.启动spark-shell时,报错
INFO cluster.YarnClientSchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@services07:34965/user/Executor#1736210263] with ID 1 INFO util.RackResolver: Resolved services07 to /default-rack INFO storage.BlockManagerMasterActor: Registering block manager services07:51154 with 534.5 MB RAM
解决方案:
在spark的spark-env配置文件中配置下列配置项:
将export SPARK_WORKER_MEMORY, export SPARK_DRIVER_MEMORY, export SPARK_YARN_AM_MEMORY的值设置成小于534.5 MB
3.启动spark SQL时,报错:
Caused by: org.datanucleus.store.rdbms.connectionpool.DatastoreDriverNotFoundException: The specified datastore driver ("com.mysql.jdbc.Driver ") was not found in the CLASSPATH. Please check your CLASSPATH specification, and the name of the driver.
解决方案:
在
$SPARK_HOME/conf/spark-env.sh
文件中配置:
export SPARK_CLASSPATH=$HIVE_HOME/lib/mysql-connector-java-5.1.6-bin.jar
4.启动spark SQL时,报错:
java.sql.SQLException: Access denied for user 'services02 '@'services02' (using password: YES)
解决方案:
检查
hive-site.xml
的配置项, 有以下这个配置项
看该密码与与MySQL的登录密码是否一致
5.启动计算任务时报错:
报错信息为:
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 seconds]. This timeout is controlled by spark.rpc.askTimeout
解决方案:
分配的core不够, 多分配几核的CPU
6.启动计算任务时报错:
不断重复出现
status.SparkJobMonitor: 2017-01-04 11:53:51,564 Stage-0_0: 0(+1)/1 status.SparkJobMonitor: 2017-01-04 11:53:54,564 Stage-0_0: 0(+1)/1 status.SparkJobMonitor: 2017-01-04 11:53:55,564 Stage-0_0: 0(+1)/1 status.SparkJobMonitor: 2017-01-04 11:53:56,564 Stage-0_0: 0(+1)/1
解决方案:
资源不够, 分配大点内存, 默认值为512MB.
7.启动Spark作为计算引擎时报错:
报错信息为:
java.io.IOException: Failed on local exception: java.nio.channels.ClosedByInterruptException; Host Details : local host is: "m1/192.168.179.201"; destination host is: "m1":9000; at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:772) at org.apache.hadoop.ipc.Client.call(Client.java:1474) Caused by: java.nio.channels.ClosedByInterruptException at java.nio.channels.spi.AbstractInterruptibleChannel.end(AbstractInterruptibleChannel.java:202) at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:681) 17/01/06 11:01:43 INFO retry.RetryInvocationHandler: Exception while invoking getFileInfo of class ClientNamenodeProtocolTranslatorPB over m2/192.168.179.202:9000 after 9 fail over attempts. Trying to fail over immediately.
解决方案:
出现该问题的原因有多种, 我所遇到的是使用Hive On Spark时报了此错误,解决方案是:
在
hive-site.xml
文件下正确配置该项
8.启动spark集群时报错,启动命令为:start-mastersh
报错信息:
Exception in thread "main" java.lang.NoClassDefFoundError: org/slf4j/Logger at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclaredMethods(Class.java:2701) at java.lang.Class.privateGetMethodRecursive(Class.java:3048) at java.lang.Class.getMethod0(Class.java:3018) at java.lang.Class.getMethod(Class.java:1784) at sun.launcher.LauncherHelper.validateMainClass(LauncherHelper.java:544) at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:526) Caused by: java.lang.ClassNotFoundException: org.slf4j.Logger at java.net.URLClassLoader.findClass(URLClassLoader.java:381) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) ... 7 more
解决方案:
将
/home/centos/soft/hadoop/share/hadoop/common/lib
目录下的
slf4j-api-1.7.5.jar
文件,
slf4j-log4j12-1.7.5.jar
文件和
commons-logging-1.1.3.jar
文件拷贝到
/home/centos/soft/spark/lib
目录下
9.启动spark集群时报错,启动命令为:start-mastersh
报错信息:
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/conf/Configuration at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclaredMethods(Class.java:2570) at java.lang.Class.getMethod0(Class.java:2813) at java.lang.Class.getMethod(Class.java:1663) at sun.launcher.LauncherHelper.getMainMethod(LauncherHelper.java:494) at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:486) Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.conf.Configuration at java.net.URLClassLoader$1.run(URLClassLoader.java:366) at java.net.URLClassLoader$1.run(URLClassLoader.java:355) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:354) at java.lang.ClassLoader.loadClass(ClassLoader.java:425) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308) at java.lang.ClassLoader.loadClass(ClassLoader.java:358) ... 6 more
解决方案:
官网资料: https://spark.apache.org/docs/latest/hadoop-provided.html#apache-hadoop
编辑
/home/centos/soft/spark/conf/spark-env.sh
文件,配置下列配置项:
export SPARK_DIST_CLASSPATH=$(/home/centos/soft/hadoop/bin/hadoop classpath)
10.启动HPL/SQL存储过程时报错:
报错信息:
2017-01-10T15:20:18,491 ERROR [HiveServer2-Background-Pool: Thread-97] exec.TaskRunner: Error in executeTask java.lang.OutOfMemoryError: PermGen space at java.lang.ClassLoader.defineClass1(Native Method) at java.lang.ClassLoader.defineClass(ClassLoader.java:800) 2017-01-10T15:20:18,491 ERROR [HiveServer2-Background-Pool: Thread-97] ql.Driver: FAILED: Execution Error, return code -101 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. PermGen space 2017-01-10T15:20:18,491 INFO [HiveServer2-Background-Pool: Thread-97] ql.Driver: Completed executing command(queryId=centos_20170110152016_240c1b5e-3153-4179-80af-9688fa7674dd); Time taken: 2.113 seconds 2017-01-10T15:20:18,500 ERROR [HiveServer2-Background-Pool: Thread-97] operation.Operation: Error running hive query: org.apache.hive.service.cli.HiveSQLException: Error while processing statement: FAILED: Execution Error, return code -101 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. PermGen space at org.apache.hive.service.cli.operation.Operation.toSQLException(Operation.java:388) at org.apache.hive.service.cli.operation.SQLOperation.runQuery(SQLOperation.java:244) at org.apache.hive.service.cli.operation.SQLOperation.access$800(SQLOperation.java:91) Caused by: java.lang.OutOfMemoryError: PermGen space at java.lang.ClassLoader.defineClass1(Native Method) at java.lang.ClassLoader.defineClass(ClassLoader.java:800)
解决方案:
参考资料: http://blog.csdn.net/xiao_jun_0820/article/details/45038205
出现该问题是因为Spark默认使用全部资源, 而此时主机的内存已用, 应在Spark配置文件中限制内存的大小.
在
hive-site.xml
文件下配置该项:
或在
spark-default.conf
文件下配置:
spark.driver.extraJavaOptions -XX:PermSize=128M -XX:MaxPermSize=256M
三.Spark常见问题汇总
1.报错信息:
Operation category READ is not supported in state standbyorg.apache.hadoop.ipc.RemoteException(org.apache.hadoop.ipc.StandbyException): Operation category READ is not supported in state standby
解决方案:
查看执行Spark计算的是否处于standby状态, 用浏览器访问该主机:
http://m1:50070
, 如果处于standby状态, 则不可在处于StandBy机器运行spark计算,应切执行Spark计算的主机从Standby状态切换到Active状态
2.问题出现情景:
Spakr集群的所有运行数据在Master重启是都会丢失
解决方案:
配置
spark.deploy.recoveryMode
选项为
ZOOKEEPER
3.报错信息:
由于Spark在计算的时候会将中间结果存储到/tmp目录,而目前linux又都支持tmpfs,其实就是将/tmp目录挂载到内存当中, 那么这里就存在一个问题,中间结果过多导致/tmp目录写满而出现如下错误
No Space Left on the device(Shuffle临时文件过多)
解决办法:
修改配置文件
spark-env.sh
,把临时文件引入到一个自定义的目录中去, 即:
export SPARK_LOCAL_DIRS=/home/utoken/datadir/spark/tmp
4.报错信息:
java.lang.OutOfMemory, unable to create new native thread Caused by: java.lang.OutOfMemoryError: unable to create new native thread at java.lang.Thread.start0(Native Method) at java.lang.Thread.start(Thread.java:640)
解决方案:
上面这段错误提示的本质是Linux操作系统无法创建更多进程,导致出错,并不是系统的内存不足。因此要解决这个问题需要修改Linux允许创建更多的进程,就需要修改Linux最大进程数。
(1)修改Linux最大进程数
ulimit -a
(2)临时修改允许打开的最大进程数
ulimit -u 65535
(3)临时修改允许打开的文件句柄
ulimit -n 65535
(4)永久修改Linux最大进程数量
sudo vi /etc/security/limits.d/90-nproc.conf
- soft nproc 60000 root soft nproc unlimited
永久修改用户打开文件的最大句柄数,该值默认
1024
,一般都会不够,常见错误就是
not open file
解决办法:
sudo vi /etc/security/limits.conf
bdata soft nofile 65536 bdata hard nofile 65536
5.问题出现情景:
Worker节点中的work目录占用许多磁盘空间, 这些是Driver上传到worker的文件, 会占用许多磁盘空间.
解决方案:
需要定时做手工清理. 目录地址:
/home/centos/soft/spark/work
6.问题出现情景:
spark-shell
提交
Spark Application
如何解决依赖库
解决方案:
利用
--driver-class-path
选项来指定所依赖的jar文件,注意的是
--driver-class-path
后如果需要跟着多个jar文件的话,jar文件之间使用冒号
:
来分割。
7.Spark在发布应用的时候,出现连接不上master
报错信息如下:
INFO AppClient$ClientEndpoint: Connecting to master spark://s1:7077... WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://sparkMaster@s1:7077] has failed, address is now gated for [5000] ms. Reason: [Disassociated]
解决方案:
检查所有机器时间是否一致.hosts是否都配置了映射.客户端和服务器端的Scala版本是否一致.Scala版本是否和Spark兼容
8.开发spark应用程序(和Flume-NG结合时)发布应用时可能会报错
报错信息如下:
ERROR ReceiverSupervisorImpl: Stopped receiver with error: org.jboss.netty.channel.ChannelException: Failed to bind to: /192.168.10.156:18800 ERROR Executor: Exception in task 0.0 in stage 2.0 (TID 70) org.jboss.netty.channel.ChannelException: Failed to bind to: /192.168.10.156:18800 at org.jboss.netty.bootstrap.ServerBootstrap.bind(ServerBootstrap.java:272) Caused by: java.net.BindException: Cannot assign requested address
解决方案:
参考资料: http://www.tuicool.com/articles/Yfi2eyR
由于spark通过Master发布的时候,会自动选取发送到某一台的
worker
节点上,所以这里绑定端口的时候,需要选择相应的
worker
服务器,但是由于我们无法事先了解到,spark发布到哪一台服务器的,所以这里启动报错,是因为在
192.168.10.156:18800
的机器上面没有启动
Driver
程序,而是发布到了其他服务器去启动了,所以无法监听到该机器出现问题,所以我们需要设置
spark
分发包时,发布到所有
worker
节点机器,或者发布后,我们去寻找发布到了哪一台机器,重新修改绑定
IP
,重新发布,有一定几率发布成功。
9.使用Hive on Spark时报错:
ERROR XSDB6: Another instance of Derby may have already booted the database /home/bdata/data/metastore_db.
解决方案:
在使用
Hive on Spark
模式操作hive里面的数据时,报以上错误,原因是因为HIVE采用了
derby
这个内嵌数据库作为数据库,它不支持多用户同时访问,解决办法就是把
derby
数据库换成mysql数据库即可
10.找不到hdfs集群名字dfscluster
报错信息:
java.lang.IllegalArgumentException: java.net.UnknownHostException: dfscluster
解决办法:
将
$HADOOP_HOME/etc/hadoop/hdfs-site.xml
文件拷贝到Spark集群的所有主机的
$SPARK_HOME/conf
目录下,然后重启Spark集群
cd /home/centos/soft/spark/conf/
for i in {201,202,203}; do scp hdfs-site.xml 192.168.179.$i:/home/centos/soft/spark/conf/; done
11.在执行yarn集群或者客户端时,报错:
执行指令:
sh $SPARK_HOME/bin/spark-sql --master yarn-client
报如下错误:
Exception in thread "main" java.lang.Exception: When running with master 'yarn-client' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.
解决办法:
根据提示,配置
HADOOP_CONF_DIR
or
YARN_CONF_DIR
的环境变量即可, 在
spark-env.sh
文件中配置以下几项:
export HADOOP_HOME=/u01/hadoop-2.6.1 export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop PATH=$PATH:$HIVE_HOME/bin:$HADOOP_HOME/bin
12.提交spark计算任务时,报错:
报错信息如下:
Job aborted due to stage failure: Task 3 in stage 0.0 failed 4 times, most recent failure: Lost task 3.3 in [org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 0 on 192.168.10.38: remote Rpc client disassociated [org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 1 on 192.168.10.38: remote Rpc client disassociated [org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 2 on 192.168.10.38: remote Rpc client disassociated [org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 3 on 192.168.10.38: remote Rpc client disassociated [org.apache.spark.scheduler.TaskSetManager]-[ERROR] Task 3 in stage 0.0 failed 4 times; aborting job Exception in thread "main" org.apache.spark.SparkException : Job aborted due to stage failure: Task 3 in stage 0.0 failed 4 times, most recent failure: Lost task 3.3 in stage 0.0 (TID 14, 192.168.10.38): ExecutorLostFailure (executor 3 lost) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)
解决方案:
这里遇到的问题主要是因为数据源数据量过大,而机器的内存无法满足需求,导致长时间执行超时断开的情况,数据无法有效进行交互计算,因此有必要增加内存
13.启动Spark计算任务:
长时间等待无反应,并且看到服务器上面的web界面有内存和核心数,但是没有分配,报错信息如下:
status.SparkJobMonitor: 2017-01-04 11:53:51,564 Stage-0_0: 0(+1)/1 status.SparkJobMonitor: 2017-01-04 11:53:51,564 Stage-0_0: 0(+1)/1 status.SparkJobMonitor: 2017-01-04 11:53:51,564 Stage-0_0: 0(+1)/1 status.SparkJobMonitor: 2017-01-04 11:53:51,564 Stage-0_0: 0(+1)/1 status.SparkJobMonitor: 2017-01-04 11:53:51,564 Stage-0_0: 0(+1)/1 status.SparkJobMonitor: 2017-01-04 11:53:51,564 Stage-0_0: 0(+1)/1
日志信息显示:
WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
解决方案:
出现上面的问题主要原因是因为我们通过参数
spark.executor.memory
设置的内存过大,已经超过了实际机器拥有的内存,故无法执行,需要等待机器拥有足够的内存后,才能执行任务,可以减少任务执行内存,设置小一些即可
14.内存不足或数据倾斜导致Executor Lost(spark-submit提交)
报错信息如下:
TaskSetManager: Lost task 1.0 in stage 6.0 (TID 100, 192.168.10.37): java.lang.OutOfMemoryError: Java heap space INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on 192.168.10.37:57139 (size: 42.0 KB, free: 24.2 MB) INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on 192.168.10.38:53816 (size: 42.0 KB, free: 24.2 MB) INFO TaskSetManager: Starting task 3.0 in stage 6.0 (TID 102, 192.168.10.37, ANY, 2152 bytes) WARN TaskSetManager: Lost task 1.0 in stage 6.0 (TID 100, 192.168.10.37): java.lang.OutOfMemoryError: Java heap space at java.io.BufferedOutputStream.
解决办法:
由于我们在执行Spark任务是,读取所需要的原数据,数据量太大,导致在Worker上面分配的任务执行数据时所需要的内存不够,直接导致内存溢出了,所以我们有必要增加Worker上面的内存来满足程序运行需要。
在
Spark Streaming
或者其他spark任务中,会遇到在Spark中常见的问题,典型如
Executor Lost
相关的问题(
shuffle fetch
失败,
Task
失败重试等)。这就意味着发生了内存不足或者数据倾斜的问题。这个目前需要考虑如下几个点以获得解决方案:
A.相同资源下,增加
partition
数可以减少内存问题。 原因如下:通过增加
partition
数,每个task要处理的数据少了,同一时间内,所有正在运行的task要处理的数量少了很多,所有
Executor
占用的内存也变小了。这可以缓解数据倾斜以及内存不足的压力。
B.关注
shuffle read
阶段的并行数。例如
reduce
,
group
之类的函数,其实他们都有第二个参数,并行度(
partition
数),只是大家一般都不设置。不过出了问题再设置一下,也不错。
C.给一个
Executor
核数设置的太多,也就意味着同一时刻,在该
Executor
的内存压力会更大,
GC
也会更频繁。我一般会控制在
3
个左右。然后通过提高
Executor
数量来保持资源的总量不变。
- Spark Streaming 和kafka整合
报错信息如下:
OffsetOutOfRangeException
解决方案:
如果和kafka消息中间件结合使用,请检查消息体是否大于默认设置
1m
,如果大于,则需要设置
fetch.message.max.bytes=1m
, 这里需要把值设置大些
17.报错信息:
java.io.IOException : Could not locate executable null\bin\winutils.exe in the Hadoop binaries.(spark sql on hive 任务引发HiveContext NullPointerException)
解决办法:
在开发hive和Spark整合的时候,如果是Windows系统,并且没有配置
HADOOP_HOME
的环境变量,那么可能找不到
winutils.exe
这个工具,由于使用hive时,对该命令有依赖,所以不要忽视该错误,否则将无法创建HiveContext,一直报
Exception in thread "main" java.lang.RuntimeException: java.lang.NullPointerException
因此,解决该办法有两个方式
方案A:
把任务打包成jar,上传到服务器上面,服务器是配置过
HADOOP_HOME
环境变量的,并且不需要依赖
winutils
,所以只需要通过spark-submit方式提交即可,如:
spark-submit --class com.pride.hive.HiveOnSparkTest --master spark://bdata4:7077 spark-simple-1.0.jar
方案B:
解决
winutils.exe
命令不可用问题,配置Windows上面
HADOOP_HOME
的环境变量,或者在程序最开始的地方设置
HADOOP_HOME
的属性配置,这里需要注意,由于最新版本已经没有winutils这些exe命令了,我们需要在其他地方下载该命令放入HADOOP的bin目录下,当然也可以直接配置下载项目的环境变量,变量名一定要是HADOOP_HOME才行
下载地址: (记得FQ哦) https://github.com/srccodes/hadoop-common-2.2.0-bin/archive/master.zip
任何项目都生效,需要配置Windows的环境变量,如果只在程序中生效可在程序中配置即可,如:
//用于解决Windows下找不到winutils.exe命令 System. setProperty("hadoop.home.dir", "E:\Software\hadoop-common-2.2.0-bin" );
19.报错信息:
Exception in thread "main" org.apache.hadoop.security.AccessControlException : Permission denied: user=Administrator, access=WRITE, inode="/data":bdata:supergroup:drwxr-xr-x
解决办法
1.在系统的环境变量或JVM变量里面添加
HADOOP_USER_NAME
,如程序中添加:
System.setProperty("HADOOP_USER_NAME", "bdata");
, 这里的值就是以后会运行HADOOP上的Linux的用户名,如果是eclipse,则修改完重启eclipse,不然可能不生效
2.修改有问题的目录权限
hadoop fs -chmod 755 /tmp
并hive-site.xml文件中增加以下配置
20.运行Spark-SQL报错:
org.apache.spark.sql.AnalysisException: unresolved operator 'Project
解决办法:
在Spark-sql和hive结合时或者单独Spark-sql,运行某些sql语句时,偶尔出现上面错误,那么我们可以检查一下sql的问题,这里遇到的问题是嵌套语句太多,导致spark无法解析,所以需要修改sql或者改用其他方式处理;特别注意该语句可能在hive里面没有错误,spark才会出现的一种错误。
21.报错信息如下:
org.apache.spark.SparkException: Only one SparkContext may be running in this JVM (see SPARK-2243). To ignore this error, set spark.driver.allowMultipleContexts = true.
解决方案:
使用
Use this constructor JavaStreamingContext(sparkContext: JavaSparkContext, batchDuration: Duration)
替代
new JavaStreamingContext(sparkConf, Durations.seconds(5))
22.报错信息如下:
java.lang.IllegalArgumentException: requirement failed: No output operations registered, so nothing to execute
解决方案:
tranformation
最后一步产生的那个RDD必须有相应Action操作,例如
massages.print()
等
23.报错信息如下:
ERROR ApplicationMaster: SparkContext did not initialize after waiting for 100000 ms. Please check earlier log output for errors. Failing the application
解决方案:
资源不能分配过大,或者没有把
.setMaster("local[*]")
去掉
24.报错信息如下:
java.util.regex.PatternSyntaxException: Dangling meta character '?' near index 0
解决方案:
元字符记得转义
25.报错信息如下:
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/fs/FSDataInputStream
解决方案:
编译spark用了
hadoop-provided
参数,导致缺少
hadoop相关包
26.报错信息如下:
org.apache.spark.SparkException: Task failed while writing rows Caused by: org.elasticsearch.hadoop.rest.EsHadoopInvalidRequest: null
解决方案:
ES负载过高,修复ES
27.报错信息如下:
org.apache.spark.SparkException: Task failed while writing rows scala.MatchError: Buffer(10.113.80.29, None) (of class scala.collection.convert.Wrappers$JListWrapper)
解决方案:
ES数据在
sparksql
类型转化时不兼容,可通过
EsSpark.esJsonRDD
以字符串形式取ES数据,再把rdd转换成
dataframe
28.报错信息如下:
SparkListenerBus has already stopped! Dropping event SparkListenerStageCompleted
解决方案:
集群资源不够,确保真实剩余内存大于
spark job
申请的内存
29.报错信息如下:
ExecutorLostFailure (executor 3 exited caused by one of the running tasks) Reason: Container killed by YARN for exceeding memory limits. 61.0 GB of 61 GB physical memory used
解决方案:
配置项
spark.storage.memoryFraction
默认值为0.6, 应加大
spark.storage.memoryFraction
的系数
30.问题如下:
如何定位spark的数据倾斜
解决方案:
在
Spark Web UI
看一下当前stage各个task分配的数据量以及执行时间,根据stage划分原理定位代码中
shuffle
类算子
31.报错信息如下:
如何解决spark数据倾斜
解决方案:
过滤少数导致倾斜的key(仅限于抛弃的Key对作业影响很小)
提高
shuffle
操作并行度(提升效果有限)
两阶段聚合(局部聚合+全局聚合),先对相同的key加前缀变成多个key,局部
shuffle
后再去掉前缀,再次进行全局
shuffle
(仅适用于聚合类的
shuffle
操作,效果明显,对于join类的
shuffle
操作无效),
将
reduce join
转为
map join
,将小表进行广播,对大表map操作,遍历小表数据(仅适用于大小表或RDD情况)
使用随机前缀和扩容RDD进行
join
,对其中一个RDD每条数据打上
n
以内的随机前缀,用
flatMap
算子对另一个RDD进行n倍扩容并扩容后的每条数据依次打上0~n的前缀,最后将两个改造
key
后的RDD进行join(能大幅缓解join类型数据倾斜,需要消耗巨额内存)
32.报错信息如下:
org.apache.spark.SparkException: Failed to get broadcast_790_piece0 of broadcast_790
解决方案:
删除
spark-defaults.conf
文件中
spark.cleaner.ttl
的配置
33.报错信息如下:
MapperParsingException[Malformed content, must start with an object
解决方案:
采用接口
JavaEsSpark.saveJsonToEs
,因为
saveToEs
只能处理对象不能处理字符串
34.报错信息如下:
java.util.concurrent.TimeoutException: Cannot receive any reply in 120 seconds
解决方案:
确保所有节点之间能够免密码登录
确保所在的主机满足
spark-env.sh
中分配的CPU个数,若
spark-env.sh
中分配的CPU个数为一个,而
master
和
worker
在同一部主机上,则该主机需最少分配2个
CPU
35.报错信息如下:
Exception in thread "main" org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
解决方案:
出现此类问题有很多种, 当时遇到这问题的因为是在spark未改动的情况下, 更换了Hive的版本导致版本不对出现了此问题, 解决此问题的方法是:
再次运行spark计算, 查看日志中Hive的版本, 检查当前Hive是否与Spark日志中的Hive版本一致
若Hive版本不一致, 则删除现有的Hive, 并删除MySQL中Hive的元数据(若使用MySQL元数据库), HDFS上
hive,
tmp,
user
目录下的数据
安装与Spark日志中版本匹配的Hive